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Objectives

Understand the physical mechanism of convection and its classification.

Visualize the development of velocity and thermal boundary layers during
flow over surfaces.

Gain a working knowledge of the dimensionless Reynolds, Prandtl, and
Nusselt numbers.

Distinguish between laminar and turbulent flows, and gain an
understanding of the mechanisms of momentum and heat transfer in
turbulent flow.

Derive the differential equations that govern convection on the basis of
mass, momentum, and energy balances, and solve these equations for
some simple cases such as laminar flow over a flat plate.

Nondimensionalize the convection equations and obtain the functional
forms of friction and heat transfer coefficients.

Use analogies between momentum and heat transfer, and determine
heat transfer coefficient from knowledge of friction coefficient.
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FIGURE 6-1

Heat transfer from a hot surface to the
surrounding fluid by convection and
conduction.

Conduction and convection both
require the presence of a material
medium but convection requires
fluid motion.

Convection involves fluid motion as
well as heat conduction.

Heat transfer through a solid is
always by conduction.

Heat transfer through a fluid is by
convection in the presence of bulk
fluid motion and by conduction in
the absence of it.

Therefore, conduction in a fluid can
be viewed as the limiting case of
convection, corresponding to the
case of quiescent fluid.



The fluid motion enhances heat transfer, since it brings warmer and
cooler chunks of fluid into contact, initiating higher rates of conduction
at a greater number of sites in a fluid.

The rate of heat transfer through a fluid is much higher by convection
than it is by conduction.

In fact, the higher the fluid velocity, the higher the rate of heat transfer.
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Convection heat transfer strongly depends on fluid properties dynamic
viscosity, thermal conductivity, density, and specific heat, as well as fluid
velocity. It also depends on the geometry and the roughness of the solid
surface, in addition to the type of fluid flow (such as being streamlined or
turbulent).

Jeory = MT, — T,) (W/m?) Newton’s
. law of
Q..=hA(T.— T, (W) cooling

< COonv

h = convection heat transfer coefficient. W/m? - °C

A_ = heat transfer surface area, m?
T, = temperature of the surface, °C

T.. = temperature of the fluid sufficiently far from the surface, °C
Convection heat transfer coefficient, h: The rate of heat
transfer between a solid surface and a fluid per unit surface

area per unit temperature difference.



No-slip condition: A fluid in direct contact with a solid “sticks” to the
surface due to viscous effects, and there is no slip.

Boundary layer: The flow region adjacent to the wall in which the
viscous effects (and thus the velocity gradients) are significant.

The fluid property responsible for the no-slip condition and the
development of the boundary Iayer IS Viscosity.
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An implication of the no-slip condition is that heat transfer from the solid
surface to the fluid layer adjacent to the surface is by pure conduction,
since the fluid layer is motionless, and can be expressed as

+ + ol
Qeonv — Ycond — _kﬂuidﬁ o (W/ 1'1’12)

To determine the convection heat transfer coefficient when the temperature
distribution within the fluid is known:

—Kpuia(0T10Yy)y =g
r.—T,

h = (W/m? - °C)

The convection heat transfer coefficient, in general, varies along the flow
(or x-) direction. The average or mean convection heat transfer coefficient
for a surface in such cases is determined by properly averaging the local
convection heat transfer coefficients over the entire surface area A, or
length L as

I ("
h=—| hygdA, and h=—| hdx
A L

s YA, ’0



Nusselt Number

In convection studies, it is common practice to nhondimensionalize the governing
equations and combine the variables, which group together into dimensionless
numbers in order to reduce the number of total variables.

Nusselt number: Dimensionless convection heat transfer coefficient.

hL, Joony = NAT .
Nu = T _ qconv o hAT f?L — Nu
) =k=2L 4. KAT/L  k |
L. is the characteristic length. Geong = K L cond /
/ I, The Nusselt number represents the
enhancement of heat transfer through

a fluid layer as a result of convection
- Fluid ""‘“‘H - :

relative to conduction across the same
- layermu a_ -

fluid layer.
— The larger the Nusselt number, the
\- T more effective the convection
| :
AT=T,-T, A Nusselt number of Nu = 1 for a fluid

layer represents heat transfer across
the layer by pure conduction.




Convection in daily life

Blowing
on food

FIGURE 6-7

We resort to forced convection
whenever we need to increase the rate
of heat transfer.

We turn on the fan on hot
summer days to help our
body cool more effectively.
The higher the fan speed,
the better we feel.

We stir our soup and blow
on a hot slice of pizza to
make them cool faster.

The air on windy winter
days feels much colder
than it actually is.

The simplest solution to
heating problems in
electronics packaging is to
use a large enough fan.



CLASSIFICATION OF FLUID FLOWS

Viscous versus Inviscid Regions of Flow

Viscous flows: Flows in which the frictional effects are significant.

Inviscid flow regions: In many flows of practical interest, there are regions
(typically regions not close to solid surfaces) where viscous forces are
negligibly small compared to inertial or pressure forces.
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l the plate).




Internal versus External Flow

External flow: The flow of an unbounded fluid over a surface such
as a plate, a wire, or a pipe.

Internal flow: The flow in a pipe or duct if the fluid is completely
bounded by solid surfaces.

-  Water flow in a pipe is
internal flow, and
airflow over a ball is
external flow.

« The flow of liquids in a
duct is called open-
channel flow if the duct
Is only partially filled
with the liquid and
there is a free surface.

External flow over a tennis ball, and the
turbulent wake region behind.



Compressible versus Incompressible Flow

Incompressible flow: If the density
of flowing fluid remains nearly
constant throughout (e.g., liquid
flow).

Compressible flow: If the density of
fluid changes during flow (e.g.,
high-speed gas flow).

When analyzing rockets, spacecratft,
and other systems that involve high-
speed gas flows, the flow speed is
often expressed by the Mach number
defined as

VvV Speed of flow

Ma =— = — -
¢ Speed of sound

Ma =1 Sonic flow

Ma <1 Subsonic flow
Ma >1 Supersonic flow
Ma >> 1 Hypersonic flow

c is the speed of sound whose
value is 346 m/s in air at room
temperature at sea level.

Gas flows can often be
approximated as incompressible
if the density changes are under
about 5 percent, which is usually
the case when Ma < 0.3.

Therefore, the compressibility
effects of air can be neglected at
speeds under about 100 m/s.



Laminar versus Turbulent Flow

Laminar flow: The highly
ordered fluid motion
characterized by smooth
layers of fluid. The flow of
high-viscosity fluids such as
oils at low velocities is
typically laminar.

Turbulent flow: The highly
disordered fluid motion that
typically occurs at high
velocities and is
characterized by velocity
fluctuations. The flow of low-
viscosity fluids such as air at
high velocities is typically
turbulent.

Transitional flow: A flow that
alternates between being
laminar and turbulent.
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Natural (or Unforced) versus Forced Flow

Forced flow: A fluid is forced to
flow over a surface or in a pipe
by external means such as a
pump or a fan.

Natural flow: Fluid motion is
due to natural means such as
the buoyancy effect, which
manifests itself as the rise of
warmer (and thus lighter) fluid
and the fall of cooler (and thus
denser) fluid.

In this schlieren image of a woman,
the rise of lighter, warmer air
adjacent to her body indicates that
humans and warm-blooded animals
are surrounded by thermal plumes
of rising warm air.



One-, Two-, and Three-Dimensional Flows

- Aflow field is best characterized by its velocity distribution.

« Aflow is said to be one-, two-, or three-dimensional if the flow velocity
varies in one, two, or three dimensions, respectively.

« However, the variation of velocity in certain directions can be small
relative to the variation in other directions and can be ignored.

Developing velocity Fully developed
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The development of the velocity profile in a circular pipe. V = V(r,
z) and thus the flow is two-dimensional in the entrance region,
and becomes one-dimensional downstream when the velocity
profile fully develops and remains unchanged in the flow
direction, V = V(r).



VELOCITY BOUNDARY LAYER

Velocity boundary layer: The region of the flow above the 1.,:1{55?:-,2;601:
plate bounded by ¢ in which the effects of the viscous fluid Tayers
shearing forces caused by fluid viscosity are felt. v <
T_he boundary layer thickness, 6, @s typically defined as the : 000V > iji“i‘ly
distance y from the surface at which u = 0.99V. — Ly at the
The hypothetical line of u = 0.99V divides the flow over a 7 L{ surface
plate into two regions: FIGURE 615

Boundary layer region: The viscous effects and the velocity :
- The development of a boundary layer
changes are significant. e "
on a surface is due to the no-slip

Irrotational flow region: The frictional effects are negligible condition and friction.
and the velocity remains essentially constant.
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FIGURE 6-14

The development of the boundary layer for flow over a flat plate, and the different flow regimes.
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The viscosity of liquids decreases and
the viscosity of gases increases with
temperature.

Shear stress: Friction force per unit area.

The shear stress for most fluids is
proportional to the velocity gradient, and
the shear stress at the wall surface is
expressed as

ou | ,
Tw = M (N/m~)

adv y=0

4 dynamic viscosity
kg/m-s or N-s/m?, or Pa-s
1 poise=0.1Pa-s

The fluids that obey the linear relationship
above are called Newtonian fluids.

Most common fluids such as water, air,
gasoline, and oils are Newtonian fluids.

Blood and liquid plastics are examples of
non-Newtonian fluids. In this text we
consider Newtonian fluids only.



Kinematic viscosity, 3 = w/p
m2/s or stoke
1 stoke = 1 cm?/s = 0.0001 m?/s

The viscosity of a fluid is a measure of its resistance to deformation,
and it is a strong function of temperature.

Wall shear stress:

V2 ﬁ : _ ..
f (N/m2) Cr 18 the friction coefficient or

7. = (C.— T .
2 skin friction coefficient.

H

Friction force over the entire surface:

p /2

g

The friction coefficient is an important parameter in heat
transfer studies since it is directly related to the heat transfer
coefficient and the power requirements of the pump or fan.



TABLE 6-1

Dynamic viscosities of some fluids
at 1 atm and 20°C (unless

otherwise stated)

Dynamic Viscosity

Fluid i, kg/m-s
Glycerin:
—20°C 134.0
0°C 10.5
20°C 1.52
40°C 0.31
Engine oil:
SAE 10W 0.10
SAE 10W30 0.17
SAE 30 0.29
SAE 50 0.86
Mercury 0.0015
Ethyl alcohol 0.0012
Water:
0°C 0.0018
20°C 0.0010
100°C (liquid) 0.00028
100°C (vapor) 0.000012
Blood, 37°C 0.00040
Gasoline 0.00029
Ammonia 0.00015
Air 0.000018
Hydrogen, 0°C 0.0000088




THERMAL BOUNDARY LAYER

A thermal boundary layer develops when a fluid at a specified temperature
flows over a surface that is at a different temperature.

Thermal boundary layer: The flow region over the surface in which the
temperature variation in the direction normal to the surface is significant.

The thickness of the thermal boundary layer 8, at any location along the
surface is defined as the distance from the surface at which the temperature

difference T - T equals 0.99(T_- T,).

T, Free-stream T..
—
T, ..f"’“;
!/ Thermal
7 R boundary
e » t T. layer
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I, +0997T,-T)
Thermal boundary layer on a flat plate (the
fluid is hotter than the plate surface).

The thickness of the thermal
boundary layer increases in the
flow direction, since the effects
of heat transfer are felt at
greater distances from the
surface further down stream.

The shape of the temperature
profile in the thermal boundary
layer dictates the convection
heat transfer between a solid
surface and the fluid flowing
over it.



Prandtl Number

The relative thickness of the velocity and the thermal boundary layers is best
described by the dimensionless parameter Prandtl number

b Molecular diffusivity of momentum , UG,
r = e - =—=
Molecular diffusivity of heat o K
TABLE 6-2 The Prandtl numbers of gases are

Typical ranges of Prandtl numbers
for common fluids

Fluid Pr
Liquid metals 0.004-0.030
Gases 0.7-1.0

Water 1.7-13.7

Light organic fluids 5-50

Oils 50-100,000
Glycerin 2000-100,000

about 1, which indicates that both
momentum and heat dissipate
through the fluid at about the same
rate.

Heat diffuses very quickly in liquid
metals (Pr << 1) and very slowly in
oils (Pr >> 1) relative to momentum.

Consequently the thermal boundary
layer is much thicker for liquid metals
and much thinner for oils relative to
the velocity boundary layer.



LAMINAR AND Laminar flow is encountered when
TURBULENT FLOWS _highly visc_:ous fluids such as oils flow

in small pipes or narrow passages.

Laminar: Smooth Dye trace
~ Turbulent  streamlines and highly

flow ordered motion. —

AVE

< Turbulent: Velocity

fluctuations and highly
*Laminar disordered motion. |
How Transition: The flow 4 Dye injection
g fluctuates between
laminar and turbulent
= flows.
Most flows encountered in
practice are turbulent.

(@) Laminar flow

Dwe trace

—-
The behavior of  Vaw

colored fluid
Laminar and Injected into the
turbulent flow flow in laminar
regimes of and turbulent Dye injection
candle smoke. flows in a pipe. (b) Turbulent flow




Reynolds Number

The transition from laminar to turbulent
flow depends on the geometry, surface
roughness, flow velocity, surface
temperature, and type of fluid

The flow regime depends mainly on the
ratio of inertial forces to viscous forces
(Reynolds number).

[nertial forces VaveD f"“'ﬁ;—"r‘}

1,.: = —

Viscous forces L v
N (]
(] ]
[
Vavg
ﬁ- L

At large Reynolds numbers, the inertial
forces, which are proportional to the
fluid density and the square of the fluid
velocity, are large relative to the viscous
forces, and thus the viscous forces
cannot prevent the random and rapid
fluctuations of the fluid (turbulent).

At small or moderate Reynolds numbers,
the viscous forces are large enough to
suppress these fluctuations and to keep
the fluid “in line” (laminar).

Critical Reynolds number, Re,: The
Reynolds number at which the flow
becomes turbulent.

The value of the critical Reynolds
number is different for different
geometries and flow conditions.

The Reynolds number can be
viewed as the ratio of inertial
forces to viscous forces
., aCtling on a fluid element.




HEAT AND MOMENTUM TRANSFER IN

TURBULENT FLOW

Most flows encountered in engineering practice are turbulent, and thus it is important to
understand how turbulence affects wall shear stress and heat transfer.

However, turbulent flow is a complex mechanism dominated by fluctuations, and the

theory of turbulent flow is still not fully understood.

Therefore, we must rely on experiments and the empirical or semi-empirical correlations

developed for various situations.

Turbulent flow is characterized by disorderly and
rapid fluctuations of swirling regions of fluid, called
eddies, throughout the flow.

These fluctuations provide an additional
mechanism for momentum and energy transfer.

The swirling eddies transport mass, momentum,
and energy to other regions of flow much more
rapidly than molecular diffusion, greatly enhancing
mass, momentum, and heat transfer.

Turbulent flow is associated with much higher
values of friction, heat transfer, and mass transfer
coefficients.

(a) Before turbulence (b) After turbulence

FIGURE 6-23

The intense mixing in turbulent flow
brings fluid particles at different
temperatures into close contact,
and thus enhances heat transfer.



average value u and a fluctuating component u'. v =u + u’

“v=7 + v, P=P+P.andT=T+T

Noting that force in a given direction is equal to the rate of change of mo-
mentum in that direction, the horizontal force acting on a fluid element above
dA due to the passing of fluid particles through dA is 6F = (pv'dA)(—u') =
—pu'v'dA. Therefore, the shear force per unit area due to the eddy motion of

fluid particles 6 F/dA = —pu'v’ can be viewed as the instantaneous turbulent
shear stress. Then the turbulent shear stress can be expressed as
Tu = —pu'v’ where u’'v’ is the time average of the product of the fluctuating

velocity components #” and ¢*. Similarly, considering that 7 = ¢,T represents
the energy of the fluid and 7" is the eddy temperature relative to the mean
value, the rate of thermal energy transport by turbulent eddies is Gt = pcp' T'.
Note that u'v’ # 0 even though «’ = 0 and v = 0 (and thus «'¢v" = 0), and
experimental results show that «"v” is usually a negative quantity. Terms such
as —pu'v" or —pu'” are called Reynolds stresses or turbulent stresses.

'y

i

Y

A

=l

FIGURE 6-24 FIGURE 6-25

Fluctuations of the velocity
component i with time at a
specified location in
turbulent flow. Time,

Fluid particle moving upward through
a differential area dA as a result of the
= velocity fluctuation 2.
!




T = —pUV = 1, SH and G = PCp T = —k, g (6-15)

where u, 1s called the turbulent (or eddy) viscosity, which accounts for mo-
mentum transport by turbulent eddies, and &, is called the turbulent (or eddy)
thermal conductivity, which accounts for thermal energy transport by turbulent

eddies. Then the total shear stress and total heat flux can be expressed conve-
niently as

B Jgu It
Tioral = (U T fy) ﬁ =plv +rv) ; (6-16)

and

al aT
ﬂftcrta] —(k + Rr) = _Pf-'p(ﬂ' + ay) E (6-17)

where v, = u,/p 1s the kinematic eddy viscosity (or eddy diffusivity of mo-
mentum) and «, = k/pc,, is the eddy thermal diffusivity (or eddy diffusivity
of heat).



DERIVATION OF DIFFERENTIAL CONVECTION

EQUATIONS

In this section we derive the governing equations of fluid flow in the bound-
ary layers. To keep the analysis at a manageable level, we assume the flow to
be steady and two-dimensional, and the fluid to be Newtonian with constant
properties (density, viscosity, thermal conductivity, etc.).

Consider the parallel flow of a fluid over a surface. We take the flow direc-
tion along the surface to be x and the direction normal to the surface to be v,
and we choose a differential volume element of length dx, height dv, and unit
depth in the z-direction (normal to the paper) for analysis (Fig. 6-27). The
fluid flows over the surface with a uniform free-stream velocity V, but the ve-
locity within boundary layer is two-dimensional: the x-component of the ve-
locity 1s i, and the y-component is v. Note that # = u(x, y) and v = v(x, y) in
steady two-dimensional flow.

Next we apply three fundamental laws to this fluid element: Conservation of
mass, conservation of momentum, and conservation of energy to obtain the con-
tinuity, momentum, and energy equations for laminar flow in boundary layers.

— Velocity
boundary

av
! +Ed."
I L
] | dy
i 1 1 y
: I 3
u
i : ”+Edr
X, ¥ frhs
v
FIGURE 6-27

Differential control volume used n the

derivation of mass balance in velocity
boundary layer in two-dimensional
flow over a surface.



The Continuity Equation

The conservation of mass principle is simply a statement that mass cannot be
created or destroyed during a process and all the mass must be accounted for
during an analysis. In steady flow. the amount of mass within the control vol-
ume remains constant, and thus the conservation of mass can be expressed as

( Rate of mass flow ) _ (.3 Rate of mass flow ) (6-18)

into the control volume/  \out of the control volume

Noting that mass flow rate is equal to the product of density, average velocity.
and cross-sectional area normal to flow, the rate at which fluid enters the con-
trol volume from the left surface is pu(dy - 1). The rate at which the fluid
leaves the control volume from the right surface can be expressed as

p(u + % dx) (dy - 1) (6-19)

Repeating this for the y direction and substituting the results into Eq. 6—18. we
obtain

puldy < 1) + pridx - 1) = p(u + g—;dx)(d}! 1)+ p(v + %d}-‘)(dx - 1) (6-20)

o

Simplifying and dividing by dx - dy - 1 gives

ou v _

+ =0 6-21
dx  dy { )

This is the conservation of mass relation in differential form. which is
also known as the continuity equation or mass balance for steady two-

dimensional flow of a fluid with constant density.



The Momentum Equations

The differential forms of the equations of motion in the velocity boundary
layer are obtained by applying Newton’s second law of motion to a differen-
tial control volume element in the boundary layer. Newton’s second law is an
expression for momentum balance and can be stated as the net force acting on
the control volume is equal to the mass times the acceleration of the fluid ele-
ment within the control volume, which is also equal to the net rate of momen-
tum outflow from the control volume.
We express Newton’s second law of motion for the control volume as

Acceleration _ [ Net force (body and surface) (6-22)
in a specified direction/ acting in that direction -

(Mass)(

or
om + a; = Fsurfam, Tt Fb::djr, x (6-23)

where the mass of the fluid element within the control volume is
om = p(dx - dy - 1) (6-24)

Noting that flow is steady and two-dimensional and thus «# = u(x, v). the total
differential of u is
au du

du=—dx +—dv 6-25
! ax a;-d'" ( )

Then the acceleration of the fluid element in the x direction becomes

v
g —du_dudx oudy . ou  ou (6-26)
“Tar oxar aydr  ax | ay
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During steady flow. a fluid may not
accelerate in time at a fixed point, but FIGURE 6-29
it may accelerate in space. Ditferential control volume used in the

derivation of x-momentum equation in
ar aP ar P velocity boundary layer in two-
Fourface,x = (E af-;)(dx 1) — (a dx)(d}’ )= (a - a—)(dx 1) dimensional flow over a surface.

2 P
(,u,—g _oF )(dx dv-1) (6-27)
v

since 7 = u(au/dy). Substituting Egs. 624, 6-26, and 6-27 into Eq. 623 and
dividing by dx - dvy - 1 gives

A . mf) Fu AP (6.28)
e _— -
P\ ax ay a gyt ax

This is the relation for the momentum balance in the x-direction, and is known
as the x-momentum equation. Note that we would obtain the same result if we
used momentum flow rates for the left-hand side of this equation instead of
mass times acceleration. If there is a body force acting in the x-direction, it can
be added to the right side of the equation provided that it is expressed per unit
volume of the fluid.



When gravity effects and other body forces are negligible and the boundary
layer approximations are valid, applying Newton’s second law of motion on
the volume element in the y-direction gives the y-momentum equation (0 be

P =0 (6-29)

dy
Thalt is, the variation of pressure in the direction normal to the surface is neg-
ligible, and thus P = P(x) and aP/ax = dP/dx. Then it follows that for a given
x, the pressure in the boundary layer is equal to the pressure in the free stream,
and the pressure determined by a separate analysis of (luid flow in the free
stream (which is typically easier because of the absence of viscous effects)
can readily be used in the boundary layer analysis.

The velocity components in the free stream region of a flat plate are u = V =
constant and v = 0. Substituting these into the x-momentum equations
(Eq. 6-28) gives dP/ax = 0. Therefore, for flow over a flat plate, the pressure
remains constant over the entire plate (both inside and outside the boundary
layer).

1) Velocity components:
v

2)  Velocity gradients:
I 0.9 <
ax ay

du
dv  dx

3)  Temperature gradients:
ar _ dT
R E;_u_
dv  dx

FIGURE 6-30

Boundary layer approximations.




Conservation of Energy Equation

The energy balance for any system undergoing any process is expressed as
Ei, — Eyy = AE em. Which states that the change in the energy content of a
system during a process is equal to the difference between the energy input
and the energy output. During a steady-flow process, the total energy con-
tent of a control volume remains constant (and thus AE .y = 0), and the
amount of energy entering a control volume in all forms must be equal to the
amount of energy leaving it. Then the rate form of the general energy equation
reduces for a steady-flow process to E;, — Eyy = 0.

Noting that energy can be transferred by heat, work, and mass only, the en-

ergy balance for a steady-flow control volume can be written explicitly as
(Ei o Ec:rut)t:rjr heat T (Ein o E.‘Du[)b‘jf work T (Ein o E."Dut)bjr mass — O (6-30)

The total energy of a flowing fluid stream per unit mass i8S €gpqm = it +
ke + pe where h is the enthalpy (which is the sum of internal energy and flow
energy), pe = gz is the potential energy, and ke = V42 = (u* + 1*)/2 is the
kinetic energy of the fluid per unit mass. The kinetic and potential energies are
usually very small relative to enthalpy, and therefore it is common practice to
neglect them (besides, it can be shown that if kinetic energy is included in the
following analysis, all the terms due to this inclusion cancel each other). We
assume the density p, specific heat ¢, viscosity u, and the thermal conductiv-
ity k£ of the fluid to be constant. Then the energy of the fluid per unit mass can
be expressed as €geum = 1 = c,T.



Energy is a scalar quantity, and thus energy interactions in all directions can Ereatouty  Emassou y
be combined in one equation. Noting that mass flow rate of the fluid entering
the control volume from the left is pu(dy-1), the rate of energy transfer to the

control volume by mass in the x-direction is, from Fig. 6-31, EEEE EEE e
I 1
; : ) . a(me )e Eneatin, x II 1 Epeatout x
(Ein — Ec:ut\"h}’ mass, x — (M€gyeqm)y — |:“H€su'eam)x + (-;;eam 1 d’{| v
I Y1
alpuldy - 1)e,T] T — —
= Py ? dy = —pfp(”g—x —+ Tg—;)dx{f}s (6=31) Emass in,x : : Ema-ssnut..!:
e
Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by mass is determined to be
aT o ﬂT av Eheat in, y Ema-ss in, v
(E, — E =—pclu—+T dxdy — pc +T dxdy
in nut)hymass —f ( ax ax ) . f p( ﬂ a ) FIGURE 5_31
aT aT . Fore by -
= —pc,| u— + v— |dxdy (6-32) The energy transfers by heat and mass
P\Cax o ay) : = . e
flow associated with a differential
since du/dx + dv/dy = 0 from the continuity equation. control volume in the thermal

The net rate of heat conduction to the volume element in the x-direction is  boundary layer in steady two-

dimensional flow.
o . .90, 9 aT
(Ein — Enut)by heat,x = Or — (Q'l + ax .X) = = a (_k(d}” 1) a)dx

0T
= kF—dx dy (6-33)
ax*

Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by heat conduction becomes
L a*T &*T T | 3*'T
(Ein = Equvyhew = K dxdy + k——dxdy = ﬁ(— + — |dxdy (6-34)
: ax’ ay’ ax*




Then the energy equation for the steady two-dimensional flow of a fluid
with constant properties and negligible shear stresses is obtained by substitut-
= N EqQS. 632 and 634 into 6-30 to be —

aT aT d?“ T
‘rJf_F Hw— + v -— | = =k ; (6-35)
ax dy ar 9y’

which states that the net energy convected by the fluid out of the control
volume is equal to the net energy transferred into the control volume by
heat conduction.

When the viscous shear stresses are not negligible, their effect is accounted
for by expressing the energy equation as

T T T YT
pc (ua—x + v &—) = k(a— + &—) + ud (6-36)

where the viscous dissipation function @ is obtained after a lengthy analysis
(see an advanced book such as the one by Schlichting tor details) to be

2 2 2

du dv du | dv
b = 2[(61) + (a}‘) + (a}, + ax) (6-37)
Viscous dissipation may play a dominant role in high-speed flows, especially
when the viscosity of the fluid is high (like the flow of oil in journal bearings).
This manifests itself as a significant rise in fluid temperature due to the con-
version of the kinetic energy of the fluid to thermal energy. Viscous dissipa-

tion is also significant for high-speed flights of aircraft.
For the special case of a stationary fluid, # = v = 0, the energy equation re-

duces, as expected. to the steady two-dimensional heat conduction equation,

2 2
&T+8T
ax’

0 (6-38)
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SOLUTIONS OF CONVECTION EQUATIONS

FOR A FLAT PLATE

Consider laminar flow of a fluid over a flat plate, as shown in Fig. 6-33. Sur-
laces that are slightly contoured such as turbine blades can also be approxi-
mated as flat plates with reasonable accuracy. The x-coordinate is measured
along the plate surface from the leading edge of the plate in the direction of
the tflow, and y is measured from the surface in the normal direction. The fluid
approaches the plate in the x-direction with a uniform upstream velocity,
which 18 equivalent to the free stream velocity V.

When viscous dissipation is negligible, the continuity, momentum, and en-
ergy equations (Eqgs. 6-21, 628, and 6-35) reduce for steady, incompressible,
laminar flow of a fluid with constant properties over a flat plate to

d dv
L T

Continuity: - 0 (6-39)
ax 9y

Momentum: u ﬁ + v ou_ v ou (6—40)
ox (}I'L’ 612
; w2

Energy: u ﬂ + v ar = w 0 T (6-41)
dx ﬂl'l-’ v

with the boundary conditions (Fig. 6-26)

Atx = 0: (0, vy =V, 1o, yvy=1T.,

Aty =0: u(x, 0y =0, vix, ) =0,Tx, 0)=T, (6-42)

Asy — oo ulx, )=V, T =)=T,

wix, =0
“ix, =0
Tix,0)=T,

FIGURE 6-33

Boundary conditions for flow over a
[lat plate.



Noticing that the general shape of the velocity profile remains the same along
wessssssssss Lhe plate, Blasius reasoned that the nondimensional velocity profile u/V should s
remain unchanged when plotted against the nondimensional distance /8,
where 6 is the thickness of the local velocity boundary layer at a given x. That
is, although both 6 and u at a given y vary with x, the velocity u at a fixed y/6
remains constant. Blasius was also aware from the work of Stokes that 6 is pro-
portional to \Vua/V, and thus he defined a dimensionless similarity variable as

—
]

Y
T]' - :‘! \I‘ IJI [5—4'3]

and thus u/V = function(n). He then introduced a stream function Ji(x, v) as
difs ol
=— and v=——
dy ax
so that the continuity equation (Eq. 6—39) is automatically satisfied and thus

eliminated (this can be verified easily by direct substitution). Next he defined
a function f{n) as the dependent variable as

i (6—44)

Ur
fin)=—"7"— (6-45)
VN vxlV
Then the velocity components become
_W _am_ . fud [V df (6-46)
ay andy  NVdnpNw  dy
E hedf v [v 1 E( df )
==V == — = —f== [ — [ p—— 6-47
YT T \Vay 2V T aN T a7 (6-47)



By differentiating these u and v relations, the derivatives of the velocity com-

|
ponents can be shown to be

e p— »

Vv dz I,"? dz 2 Vl‘, dj
ou Loou_y Y4y gu Vo 4y (6-48)
ax 2 gt dy  Nowxgg gt v dif

Substituting these relations into the momentum equation and simplifying, we
obtain
5 d’f N d*f
dn’ dn’
which is a third-order nonlinear differential equation. Therefore, the system
of two partial differential equations is transformed into a single ordinary dif-
[erential equation by the use of a similarity variable. Using the definitions

0 (6—49)

of fand n, the boundary conditions in terms of the similarity variables can be
expressed as

df =0, and df =1 (6-50)

(0) =0, —
f dnl, = dnl, -«

The transformed equation with its associated boundary conditions cannot be
solved analytically, and thus an alternative solution method is necessary. The
problem was first solved by Blasius in 1908 using a power series expansion ap-
proach, and this original solution is known as the Blasius solution. The prob-
lem is later solved more accurately using different numerical approaches, and
results from such a solution are given in Table 6-3. The nondimensional veloc-
ity profile can be obtained by plotting «#/V against n. The results obtained by
this simplified analysis are in excellent agreement with experimental results.

. TABLE 6-3

Similarity function fand its

derivatives for laminar boundary

layer along a flat plate.

df u d?f
7 f —_—=— —

dn V dn?
0 0 0 0.332
0.5 0.042 0.166 0.331
1.0 0.1e6 0.330 0.323
1.5 0370 0.487 0.303
2.0 0.650 0.630 0.267
2.5 0.996 0.751 0.217
3.0 1.397 0.846 0.161
3.5 1.838 0.913 0.108
4.0 2.306 0.956 0.064
4.5 2.790 0.980 0.034
b.0 3.283 0.992 0.016
5.5 3.781 0.997 0.007
6.0 4.280 0.999 0.002
o o 1 0




Recall that we defined the boundary layer thickness as the distance from the
surface for which u/V = (.99, We observe from Table 6-3 that the value of n
corresponding to u/V = 0.99 is n = 4.91. Substituting n = 4.91 and y = § N0 m———
the definition of the similarity variable (Eq. 6-43) gives 4.91 = 8\/V/vx. Then
the velocity boundary layer thickness becomes

491  491x
VVivx VRe,

0= (6-51)

since Re, = Vx/v, where x is the distance from the leading edge of the plate.
Note that the boundary layer thickness increases with increasing Kinematic
viscosity v and with increasing distance from the leading edge x, but it de-
creases with increasing free-stream velocity V. Therefore, a large free-stream
velocity suppresses the boundary layer and causes it to be thinner.,

The shear stress on the wall can be determined from its definition and the
du/ady relation in Eq. 6-48:

it [v d¥
Tw=po— | =V

[ — {5—52}
a}! v=0 \'I VX 'lﬂ'r"-l’",‘2 =0

Substituting the value of the second derivative of fat n = 0 from Table 6-3 gives

lpuV  0.332pV?

w = 0,332V — (6-53)
! \ VRe,
Then the local friction coefficient becomes
Cpy = —— = 0.664 Re;'" (6-54)

VA2

Note that unlike the boundary layer thickness, wall shear stress and the skin
friction coefficient decrease along the plate as x~ 12,



Knowing the velocity profile, we are now ready to solve the energy equation
tor temperature distribution for the case of constant wall temperature 7. First Th e En ergy
s We introduce the dimensionless temperature  as
Tty) =T, quation
X, v)=—F7/—""7— (6-55)

T, — T,
Noting that both T, and T, are constant, substitution into the energy equation
Eq. 6-41 gives

A N X

UW—+ v —=
(}I ﬂ}-‘ ﬂvz

(6-56)

Temperature profiles for flow over an isothermal flat plate are similar, just like
the velocity profiles, and thus we expect a similarity solution for temperature
to exist. Further, the thickness of the thermal boundary layer is proportional to
NVux/V, just like the thickness of the velocity boundary layer, and thus the
similarity variable is also 1, and # = #(7). Using the chain rule and substituting
the u and v expressions from Eqgs. 646 and 647 into the energy equation gives

df doan 1 [W( df \aoan  d*(om)’
V—f—j + = —(n—f )——ﬂ =« j(_‘?) (6-57)
dypdyax 2N\ x\'dn’)dn oy dn*\ady
Simplifying and noting that Pr = v/a gives
2 4 ppd0 (6-58)
dn? dn

with the boundary conditions #(0) = () and #(x) = 1. Obtaining an equation for
A as a function of 1 alone confirms that the temperature profiles are similar, and
thus a similarity solution exists. Again a closed-form solution cannot be ob-
tained for this boundary value problem, and 1t must be solved numerically.



[t 1s interesting to note that for Pr = 1., this equation reduces to Eq. 649 when
f is replaced by dffdn, which is equivalent to u/V (see Eq. 6—46). The boundary
conditions for 6 and dffdy are also identical. Thus we conclude that the velocity
and thermal boundary layers coincide, and the nondimensional velocity and
temperature profiles («/V and #) are identical for steady, incompressible, lami-
nar flow of a fluid with constant properties and Pr = 1 over an isothermal flat
plate (Fig. 6-34). The value of the temperature gradient at the surface (y = 0 or
1 = 0) in this case is, from Table 6-3, db/dn = d*fldn* = 0.332.

Equation 6-58 is solved for numerous values of Prandtl numbers. For
Pr = 0.6, the nondimensional temperature gradient at the surface is found to

be proportional to Pr!, and is expressed as
- 113
o ‘ = 0332 Pr (6.59)
dn r|=|:|
The temperature gradient at the surface is
aT at an
Cl —m-nZ| —m-n¥ 2 (6-60)
CA P A B dnl,—¢ 9V ly=g
— 0332 POA(T. — Ty | L
” = S\ vx
Then the local convection coefficient and Nusselt number become
: _k(ﬂTf&E) | v=0 I-r?
ho=—b 0332 Pk | — (6-61)
T,— T. T,—T. N ovx

Velocity or thermal
boundary layer

ort \ N

FIGURE 6-34

When Pr = 1, the velocity and ther-
mal boundary layers coincide, and
the nondimensional velocity and
temperature profiles are identical for
steady. incompressible, laminar flow
over a flat plate.



and

Nu, = — = 0.332 Pr'“Rel”?  Pr=> 0.6 (6-62)

The Nu, values obtained from this relation agree well with measured values.
Solving Eq. 6-58 numerically for the temperature profile for different
Prandtl numbers, and using the definition of the thermal boundary layer, it is
determined that 6/8, = Pr'/%. Then the thermal boundary layer thickness
becomes
O 491x

§=——=——— " (6-63)
"ope® P Re;

Note that these relations are valid only for laminar flow over an isothermal flat
plate. Also, the effect of variable properties can be accounted for by evaluat-
ing all such properties at the film temperature defined as 7T, = (T, + T..)/2.

The Blasius solution gives important insights, but its value is largely histor-
ical because of the limitations it involves. Today both laminar and turbulent
[lows over surfaces are routinely analyzed using numerical methods.
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